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Direct psychophysical scaling procedures presuppose that observers are able to directly relate a nu-
merical value to the sensation magnitude experienced. This assumption is based on fundamental con-
ditions (specified by Luce, 2002), which were evaluated experimentally. The participants’ task was to
adjust the loudness of a 1-kHz tone so that it reached a certain prespecified fraction of the loudness of
areference tone. The results of the first experiment suggest that the listeners were indeed able to make
adjustments on a ratio scale level. It was not possible, however, to interpret the nominal fractions used
in the task as “true” scientific numbers. Thus, Stevens’s (1956, 1975) fundamental assumption that an
observer can directly assess the sensation magnitude a stimulus elicits did not hold. In the second ex-
periment, the possibility of establishing a specific, strictly increasing transformation function that re-
lated the overt numerals to the latent mathematical numbers was investigated. The results indicate
that this was not possible for the majority of the 7 participants.

Scaling constitutes the assignment of numbers to sen-
sations. In most applications, direct estimation (or pro-
duction) procedures are employed, for which observers
are asked to relate a numerical value to the sensation
magnitude a stimulus elicits. The number words used in
this straightforward assessment are then considered to
correspond to the proper (mathematical) numbers they
signify, which in turn are interpreted as scale values on
the sensation scale in question.

A typical task involves presenting the listeners with two
sounds. The loudness of the first sound, the standard, is
given a prespecified modulus value, often 10 or 100. The
listener is then asked to evaluate the loudness of the sec-
ond sound by assigning a number that reflects the ratio of
loudnesses of the two sounds. Thus, if the second sound
is judged to be twice as loud as the standard, it will be as-
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signed the number 20 (or 200); if it is one fourth as loud,
the number given is 2.5 (or 25). If the observer assigns
the numbers, the method is called magnitude estimation;
if number words are presented and the corresponding stim-
ulus levels are sought, the procedure is called magnitude
production. A classical variant of magnitude production,
also used in this study, asks observers to adjust fractions,
such as 4 or /4 of magnitudes, and has been termed frac-
tionation, or ratio production (e.g., Gescheider, 1997).
Because observers are asked to judge the magnitude ratio
of two sounds, it is presumed, furthermore, that the num-
bers assigned (or matched with an appropriate sound
level) are valid on a ratio scale.

These procedures were first used to study brightness
perception (“Methode der doppelten Reize”; Merkel,
1888) and to describe the strength of auditory imagery and
the loudness of sine tones (Richardson, 1929; Richardson
& Ross, 1930), and they have been widespread ever since
Stevens (e.g., 1956, 1975) propagated them in his seminal
work. Assessments obtained by procedures of direct scal-
ing are generally reliable and consistent (for investigations
in loudness scaling, see, e.g., Collins & Gescheider, 1989;
Hellman, 1976; Teghtsoonian & Teghtsoonian, 1971).
Their validity, however, rests on two fundamental assump-
tions first laid out by Narens (1996)—namely, (1) that
observers are able to estimate (or produce) sensation
magnitudes that are meaningful on a ratio scale level and
(2) that the number words the observers use can be taken
“at face value” (i.e., that they are identical to the mathe-
matical numbers they denote).

Narens’s (1996) theory of magnitude scaling specifies
the fundamental conditions, or axioms, that have to be
met in order for these substantial assumptions to hold.
The theory covers magnitude estimations or productions
with a standard (modulus). It is based on a behavioral ax-

Copyright 2005 Psychonomic Society, Inc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




570 ZIMMER

iomatization that relates the number words used to math-
ematical numbers and on a cognitive axiomatization
connecting the mathematical numbers to the observer’s
sensations. Only the behavioral axiom system can be
subjected to an empirical test.

In 2002, Luce presented a comprehensive theory of
psychophysical scaling that treats, and seeks to unify, its
most important methods—namely, the sensory integra-
tion of stimuli, magnitude (or proportion) scaling, and
cross-modality matching. Luce’s theory incorporates an
extension of Narens’s behavioral axiomatization (Luce,
2002, p. 525), allowing for fractions to be used in ratio
assessments. Moreover, he presents a fundamental axiom
that leads to a possible form for a transformation func-
tion relating the overt numerical judgments to the un-
derlying (mathematical) numbers.

In both axiom systems, the authors distinguish between
the physical stimulus (X), the ratios to be estimated or pro-
duced ( p*, g*, r+), and the corresponding mathematical
numbers (p, q, r).! They then go on to define two funda-
mental conditions that have to be met empirically, in order
to be able to validly use the direct-scaling procedures in
the standard way advocated by Stevens. These axioms are
termed (1) commutativity (Narens, 1996, Axiom 4, p. 114),
or threshold proportion commutativity (Luce, 2002, Equa-
tion 35, p. 525), and (2) multiplicativity (Narens, 1996,
Axiom 9, p. 119), or probability reduction property (Luce,
2002, unlabeled equation on p. 525).

1. Assessments are (threshold proportion) commuta-
tive, if the order in which successive adjustments are
made is irrelevant: px gx X ~ g* p*x X.

2. Multiplicativity, or probability reduction, holds, if
the loudness of two successive adjustments and the loud-
ness of a single adjustment match, whenever the product
of the corresponding mathematical numbers (for the suc-
cessive adjustments) equals the mathematical number
denoted by the ratio to be produced in the single adjust-
ment: px gx X ~r* X; withp - q =r.

If (threshold proportion) commutativity holds, to-
gether with a number of other assumptions that either are
technical in nature or can be assumed to hold experi-
mentally in the domain investigated, it can be proven that
the assessments given are indeed valid on a ratio scale.
If, moreover, assessments are multiplicative (i.e., fulfill
the probability reduction property), the number words
used may be interpreted as corresponding to the mathe-
matical numbers they stand for.

In the only experimental investigation of Narens’s
(1996) axiom system published so far, Ellermeier and
Faulhammer (2000) tested commutativity and multiplica-
tivity in the magnitude productions of the loudness of
1-kHz tones, using 2*, 3*, and 6% adjustments. The authors
found commutativity to hold and multiplicativity to be vi-
olated in the majority of listeners and thus concluded that
although listeners are generally able to make adjustments
on a ratio scale level, contrary to established procedures,
the number words used cannot be taken at face value.

In cases such as this one, the attempt at scaling is
stuck in a quagmire: Although the magnitude judgments
are proven to be valid on a ratio scale, the scale values
proper cannot be retrieved.

The logical next step is to investigate the possibility of
finding a functional relationship between the number
words used in the magnitude productions and the corre-
sponding mathematical numbers reflecting the sensation
magnitude. Narens’s (1996) theory is concerned solely
with laying the foundations for Stevens’s scaling approach
and, therefore, does not deal with this issue. Luce (2002),
on the other hand, specifies a relevant property, termed re-
duction invariance (Theorem 2, Equations 43 and 44,
p- 527), which is a generalization of the probability reduc-
tion property. If reduction invariance holds, a particular
family of strictly increasing transformations, called Prelec
functions (Prelec, 1998)—W(p) = exp{ —A[—In(p)]#}, A
and u being positive constants (Luce, 2002, Equation 45,
p. 527)—exist, which relate the number word used in de-
scribing the ratio to be estimated or produced to the corre-
sponding mathematical number, p.

3. Given that the loudness of successive adjustments,
p* g* X, matches the loudness of some single adjustment
s* of a stimulus X, reduction invariance holds if the
match is still valid when, instead of the loudness frac-
tions px, g, and s*, their values are raised to the power
[ =2n-3m mand n being integers, with two different in-
stantiations of the exponent [: If px g* X ~ s* X, then p/*
ghx X ~ shx X and phx ghax X ~ 52 X,

Note that for the mathematical numbers p, q, and s,
which the numerals p, ¢, and s denote, it is not necessary
thatp - q = s. The number word s used in the fractionation
task can refer to any mathematical number. Reduction
invariance demands just that it be the same mathematical
number, no matter whether the fractions themselves or their
power values are employed in the loudness assessment.

In the following, Luce’s (2002) theory of proportion
scaling will be put to an empirical test by investigating
the validity of loudness fractionations of 1-kHz tones.
While producing successive integer multiples, such as in
magnitude production, tends to quickly run into ceiling
problems (Ellermeier & Faulhammer, 2000), producing
fractions such as %, %, %, and so forth, which has not been
the focus of an empirical evaluation in axiomatic frame-
works before, offers more, and finer, gradations. The
present investigation is also the first to address the em-
pirical validity of reduction invariance and, thereby, the
adequacy of Prelec’s transformation function W{(p) re-
lating numerals and numbers.

The first experiment will evaluate the assumptions in-
herent in Stevens’s direct-scaling approach by testing the
empirically relevant axioms of threshold proportion com-
mutativity (1) and probability reduction (2), whereas the
second experiment will focus on the existence of a spe-
cific family of functions that transform the numerals
used into (mathematical) numbers by evaluating the re-
duction invariance property (3).

-
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METHOD

Participants

A total of 13 listeners between 20 and 35 years of age partici-
pated in the experiments, 8 of them in the first (20-34 years; me-
dian age: 21.5 years), conducted at Oldenburg University, Germany,
and 7 in the second (23-35 years; median age: 26.0 years), per-
formed at Aalborg University, Denmark, a year later. The experi-
menters K.A. and O.L. took part in both experiments. As was es-
tablished by screening audiometry, all the participants were within
20 dB of normal hearing thresholds (American National Standards
Institute, 1996) in the range from 125 to 8000 Hz. The listeners
were given credit toward a study requirement or were paid for par-
ticipation. With the exception of the experimenters, all the partici-
pants were ignorant of the goals of the investigation.

Stimuli and Apparatus

The stimuli consisted of 1-kHz sinusoids of 500-msec duration,
including 10-msec, cos?-shaped rise/decay ramps. The signals were
generated digitally using a Tucker-Davis Technologies (TDT) Sys-
tem II AP2 signal processor, were converted with a 50-Hz sampling
rate to analog signal by a 16-bit (TDT DD1) signal converter, and
were passed through a low-pass filter with a cutoff frequency of
20 kHz (TDT FT6). Thereafter, sounds were attenuated to appro-
priate levels by a sequence of two programmable attenuators (TDT
PA4), before being delivered diotically to a headphone amplifier
(TDT HB6) and, further, to AKG-K 501 headphones.2

In the first experiment, two standard signals, at 72 and 82 dB (SPL),
respectively, were employed; in the second experiment, only the
higher level standard was used. Starting from around the standard
level(s), the participants were instructed to generate certain loud-
ness fractions in order to evaluate the axioms of threshoid propor-
tion commutativity and probability reduction in Experiment 1 and
probability reduction and reduction invariance in Experiment 2. In
Experiment 1, the following loudness fractions had to be adjusted:
Yx vk ixYix and Y%x of a reference tone X. In Experiment 2, the
fractions were %*, Aox, %*, Vix Ji* Yok Lox and Ve* of X,

Procedure

Seated in a soundproof chamber, the listener was presented, over
headphones, with a pair of sounds, which were separated by a
500-msec pause. The participant’s task was to adjust, by a converg-
ing sequence of louder/softer judgments, the loudness of the second
tone, so that it reached a certain prespecified fraction of the loud-
ness of the first tone—that is, the standard. The participant held a
custom-made response box that was equipped with three response
buttons and six light-emitting diodes (LEDs). Immediately below
each LED, a label was attached, with a certain fraction printed on
it. During each trial, one of the LEDs was lit, and the fraction it sig-
nified had to be adjusted. The participant indicated, via a button-
press on the response box, whether the second tone was louder or
softer than the fraction to be met, and accordingly, the sound level
of the second tone was adjusted before the signal pair was presented
again. On the first presentation in every trial, the level of the sec-
ond tone was randomly chosen from a range between S and 15 dB
(in 1-dB steps) below the standard level. This was done to avoid the
possibility of introducing a response bias by having to turn down
the volume at the first in the vast majority of the experimental tri-
als. After the listener’s response, the level of the second tone ini-
tially changed by 4 dB. After the first, second, and third response
reversals, level changes decreased to 2, 1, and 0.5 dB, respectively.
When the participant was confident that the loudness of the second
sound equaled the prespecified fraction of loudness with respect to
the standard, he or she pressed an “OK” button, thereby ending the
trial. The final adjustment thus reached was recorded as the out-
come of the trial. After a 2-sec interval, the next trial started.

In the first experiment, a full test of all the axioms was performed
in every block. In the second experiment, a full test of probability
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reduction (multiplicativity) and of the premise and one of the con-
clusions of reduction invariance was performed. The order in which
either the premise and Conclusion 1 (called the square-root condi-
tion in the following) or the premise and Conclusion 2 (the cube-
root condition) were tested followed a repeated ABBA-BAAB de-
sign that was counterbalanced across participants. Thus, when
evaluating the square-root condition, adjustments were made for the
fractions %o, %*, Jix, Ji*, Ji*, and * of a reference X. In the cube-
root condition, tones were adjusted to be %x, Jiox, Jix, i, ¥, or Ao*
as loud as the reference.

In both experiments, the trials were presented in random order
within blocks. A session consisted of four blocks and lasted ap-
proximately 45-55 min in the first experiment and 35-45 min in the
second experiment. After two training sessions, the participants
completed 15 blocks in 4 sessions in the first experiment. In the
second experiment, in order to increase statistical power, 28 blocks
of data were collected in each experimental condition. Thus, every
participant ran a total of 2 X 28 = 56 blocks in 14 sessions.

Rationale of the Axiom Tests

Experiment 1. In evaluating threshold proportion commutativity,
the fractions % and /% were used. If the axiom holds empirically, the
order in which adjustments are made is irrelevant: %* Ji* X ~ /i %+ X,
Therefore, the sound pressure levels of the tones that have been ad-
justed using both fractions in sequence should be the same, no mat-
ter whether they were constructed by first adjusting a tone to be %
as loud as the standard X and, subsequently, making the outcome %
as loud or by adjusting a tone to have % of the loudness of the stan-
dard tone first and, thereafter, making the outcome ¥ as loud.

The same rationale was followed in testing probability reduction,
using the fractions /4, %, and %. The axiom is valid if a tone that is
adjusted to be % as loud as the standard has the same sound pres-
sure level as a tone that is adjusted to be ) as loud and the outcome
is made % as loud: /* X ~ /4* i* X,

Experiment 2. Reduction invariance is a generalization of prob-
ability reduction that needs to be put to an empirical test only if
probability reduction is violated in a given domain. Therefore, in
the second experiment, probability reduction was evaluated as well,
using the same fractions as those in the first experiment. Whereas
probability reduction demands that a tone adjusted to be half as
loud as the standard and its outcome one third as loud in order to
match, in sound pressure level, a tone that is one sixth as loud as the
standard, reduction invariance assumes only that there is some frac-
tion s that corresponds to the successive adjustment: /i* /i* X ~ sx
X. With this premise established, reduction invariance holds if the
above equation is fulfilled when, instead of the fractions them-
selves, the square root and the cube root of the fractions are used:
Vi V% X ~ Vs# X, and Vx V%% X ~ Vs X.

From pilot experiments run with a different sample, the loudness
adjustment s* X corresponding to the successive adjustment /4% /i*
X was expected to fall between Yo* X and Y%o* X for most of the lis-
teners. For the axiom to be empirically valid, the successive adjust-
ments of the square root and the cube root of the fractions 4 and /%
must, therefore, lie in the range between the square root and the
cube root of /o and Y, respectively.

Since the roots of these fractions are irrational numbers (given in
the second column of Table 1), they cannot be expressed in true frac-
tions that a listener is able to adjust readily. In order to make the task
more easily accessible experimentally, the irrational numbers were
approximated by clear-cut fractions of comparable magnitude. Thus,
instead of using the square roots of /% and /%, listeners were asked to
adjust tones to be % and %o as loud as the reference, respectively. Sim-
ilarly, in the cube-root condition, the fractions % and % were used.

Table 1 gives the fractions used in the experiment, as well as the
rounding error thereby introduced. The differences between the exact
root values and the approximate fractions employed for the successive
adjustments did not exceed a value of 0.071 X 0.0226 = 0.0002. It
was assumed that this magnitude of imprecision exerted no, or only
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Table 1
Fractions Used in Experiment 2
Premise: Approximation Numerical
Fraction Exact Value Used Difference
Square-Root Conclusion
% V% =~ 0.7071 Yo 0.0071
% V% = 0.5774 % —0.0226
Yo VYo = 0.3162 % —-0.0171
Yoo Vo = 0.2236 A 0.0569
Cube-Root Conclusion
% V% = 0.7937 % —0.0063
% % = 0.6934 %o —0.0066
Yo V%o = 0.4642 % —0.0358
Yo % = 0.3684 % 0.0351

Note—Given are the exact fractions used for the premise and for the con-
clusion conditions, as well as the (rational) approximations used in eval-
uating the square-root and cube-root conclusion of the reduction invari-
ance property. The rightmost column lists the numerical difference
between the exact and the approximate values.

a negligible, influence on the adjustments elicited. The rounding
errors of the acceptable ranges for Vs and Vs in the conclusion con-
ditions are bigger, reaching up to 0.057. Note that because of these
approximations, the ranges used for empirical evaluation are larger
than the ranges of acceptance warranted by the reduction invariance
axiom itself.

RESULTS

Experiment 1: Evaluating Threshold Proportion
Commutativity and Probability Reduction

Each participant made 15 adjustments for every frac-
tion. Overall, 99.0% of the adjustments were made using
the final, minimal step size of 0.5 dB; the remaining ad-
justments were based on a 1-dB step size. For 1 partici-
pant, the sound pressure levels of the fractionations were
so imprecise that the adjustments of %* X and %* X did
not differ statistically. She was therefore excluded from
further data analyses. For the remaining 7 listeners, stan-
dard errors of the adjustments were similar for both levels
of the standard and ranged between 0.63 and 3.17 dB for
the single adjustments and between 0.92 and 3.68 dB for
the successive adjustments, in which the outcome of one
trial was used as the starting level for a subsequent trial.

For all the listeners, the variability of adjustments
tended to be greater for the smaller fractions than for the
larger ones, which is in accordance with the fact that the
just-noticeable difference for loudness increases with
decreasing sound pressure level (Jesteadt, Wier, & Green,
1977). Moreover, the distribution of adjustments around
their mean is not known a priori. Therefore, in assessing
threshold proportion commutativity and probability re-
duction, nonparametric Mann—Whitney U tests were used
in the statistical data analyses. The significance level was
set to & = .1, in order to reduce the risk of failing to de-
tect a true axiom violation (the alternative hypothesis).3
Data were analyzed separately for every individual.

Threshold proportion commutativity. Table 2 lists
the mean sound pressure level of the successive adjust-
ments %* %* X and Y* %= X, respectively. For both stan-

dard levels X, adjustments are statistically different only
for 1 listener, E.N. (Mann—Whitney U test; o = .1). For
the other participants, threshold proportion commutativ-
ity can be concluded to hold. To illustrate this result, the
mean adjustments and standard errors of Listener J.E.,
which can be considered as typical for the present sam-
ple, are given in Figure 1. Here, the sound pressure level
of the adjustments in question are denoted by symbols (¢
and *, for the 72-dB SPL and 82-dB SPL standard, re-
spectively) that are connected by horizontal arrows.

Probability reduction. Probability reduction (multi-
plicativity) was evaluated for the 6 listeners for whom
threshold proportion commutativity was found to hold.
From Table 3, it can be seen that the mean sound pres-
sure levels of the successive adjustments %#* /i* X clearly
differed from the single adjustment %* X in 5 of the 6
participants, leading to a violation of the probability re-
duction axiom. Only Listener O.L. showed no statisti-
cally significant effect (Mann—Whitney U test; o = .1).
For the other participants, the deviations ranged from 3.3
to 13.9 dB and were thus far above the discrimination
threshold. In Figure 2, this result is illustrated for Lis-
tener J.E.: The sound pressure levels of the successive
adjustments lie below the corresponding single adjust-
ment (connected by a nonhorizontal double arrow).

Interim summary. For both standard levels, the thresh-
old proportion commutativity axiom held for 6 of 7 par-
ticipants, whereas probability reduction was violated for
all the participants except O.L. These results correspond
to the ones reported for magnitude production by Eller-
meier and Faulhammer (2000). Taken together, this indi-
cates that listeners can assess the loudness ratio of two
sounds in loudness fractionation—that is, they are able
to make adjustments on a ratio scale level. Contrary to
the conventional, intuitive way of analyzing such data,
however, the number words used in describing these
loudness ratios do not match the (mathematical) number
values they signify. Thus, Stevens’s fundamental as-
sumption that observers can directly assess the sensation
magnitude a stimulus elicits does not hold.

In the following experiment, it was investigated whether
it is possible to establish a well-defined transformation

Table 2
Experiment 1: Evaluating Threshold Proportion Commutativity

72-dB Standard 82-dB Standard

YUk ok Vik %k %k Uk Vix %x
Listener M M z(U) M M z(U)
E.N. 242 20.57 2.03 324113 2357, 3.01
H.O. 13.87 14.27 0.21 22:33 19.27 1.16
LE. 26.17 25:33 0.15 36.6 3573 0.12
J.U. 31.73 28.67 0.85 41.7 44.13 0.64
KA. 39.2 39.8 0.10 46.03 46.63 0.04
O.L. 513 49.07 1527 56.17 56.8 0.02
S.V. 18.0 24.17 1.14 27.87 323 0.98

Note—Given are the means of the consecutive adjustments specified
(indB [SPL]), based on 15 observations each, and the z scores of the test
statistic [Mann—Whitney U test; z_;(U) = 1.68]. Statistically signifi-
cant axiom violations are given in boldface (o = .1).
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Figure 1. Experiment 1, Listener J.E.: test for threshold pro-
portion commutativity. Given are the mean sound pressure lev-
els and standard errors of single adjustments (denoted by e and
o, for the high and low standard levels, respectively) and of the
successive adjustments (denoted by x and <) used in evaluating
threshold proportion commutativity, %* %* X versus /4* %* X.
For the 82-dB (SPL) standard and 72-dB (SPL) standard, single
adjustments are connected by a dashed and a dotted line, re-
spectively. As can be seen from the horizontal double arrows,
threshold proportion commutativity holds.

function that relates overt numerals to the latent mathe-
matical numbers they reflect.

Experiment 2: Evaluating Probability Reduction
and Reduction Invariance

Seven listeners took part in the experiment, each ad-
justing tones to be /4, i*, J*, and %* /i* as loud as the
(82-dB) standard X in both experimental conditions—
that is, when determining the premise of both the square-
root and the cube-root conclusions. Thus, for each of these
loudness fractions, a total of 2 X 28 = 56 adjustments
were collected.* All other loudness fractions (which were

Table 3
Experiment 1: Evaluating Probability Reduction

72-dB Standard 82-dB Standard

ix Yk Yok ox ik Vi

Listener M M z(U) M M z(U)
E.N. Commutativity violated Commutativity violated
H.O. 15457, 2347, 2.74 2405157, 34.63 4.02
JE: 25.6 33.87 255 34.57 42.8 2.34
JU. 31.6 40.57 2.39 40.2 54.1 3.76
K.A. 37.8 41.7 2.62 47.0 50.3 2.24
(©)L; 48.73 46.47 0.35 56.17 55.8 0.35
S.V. 13.27 28157, 2.72 23133 33.0 2.43

Note—Mean adjustments of fractions (in dB [SPL]), based on 15 ob-
servations each, and the values of the test statistics are given for both
standard levels. Statistically significant axiom violations are given in
boldface [Mann—Whitney U test; z.;(U) = 1.68, a = .1].
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used to evaluate the conclusions) were adjusted 28 times
each. Ninety-six percent of all the adjustments reached
the smallest step size available—that is, 0.5 dB—whereas
4% of the adjustments were made using a 1-dB step size.
Standard errors were between 0.40 and 1.77 dB for sin-
gle adjustments and between 0.54 and 2.44 dB for suc-
cessive adjustments.

In the following, tests of the probability reduction
property, and of reduction invariance are given. As in the
first experiment, the axioms were evaluated on an indi-
vidual basis. In testing probability reduction, nonpara-
metric Mann—Whitney U tests were again used. In order
to evaluate reduction invariance, more than two sets of
observations had to be compared-—namely, the upper
and the lower bound and the successive adjustments.
Therefore, rank order Kruskal-Wallis analyses of vari-
ance (ANOVAs) were computed.

Probability reduction property. Differences be-
tween mean single adjustments of a tone % as loud as the
standard X and mean successive adjustments of Ji* Jix X
ranged between 5.16 and 15.15 dB (see the two leftmost
columns of Table 4).

As in the first experiment, the sound pressure levels of
the successive adjustments were below those of the sin-
gle adjustments for all the listeners (Mann—Whitney
U test; o = .1), leading to a unanimous rejection of the
probability reduction property (see Table 4).

Reduction invariance. To evaluate this axiom, the
premise has to be established in a first step. In the pres-
ent investigation, on the basis of the results of a pilot
study with a different subject sample (see the Experi-
ment 2 section), it is said to hold if the sound pressure
level of the successive adjustment of making a tone % as
loud as the standard X and its outcome % as loud falls
within (single) adjustments of 4* X and /io* X:

Yook X 3 Vax Vix X 3 Vox X

Given that premise, the data adhere to the reduction in-
variance property, if the successive adjustments in both
conclusion conditions fall within an acceptance region
given by the squared and cubed fractions, respectively—
namely,

%x X 3 Vox ¥* X 3 %ix X (square-root conclusion),
and
Vix X 3% ox X 3 Vh* X (cube-root conclusion).

Figure 3 illustrates the results for 1 listener, P.A.: The
mean successive adjustments for the premise condition
% Jix X (denoted by 0), the square-root Conclusion 1,
7o* %* X (denoted by ©), and the cube-root Conclusion 2
%+ Jox X (denoted by x) lie within the acceptance regions—
that is, the respective dotted areas.

The results for all the participants are listed in Table 5.
The first three columns give the sound pressure levels of
the mean adjustments. From the next column, displaying
the H statistic, it can be seen that the sound pressure level
of adjustments differs for all the participants in all the
conditions (Kruskal-Wallis ANOVA, « = .1). Post hoc
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Figure 2. Experiment 1, Listener J.E.: evaluating probability
reduction. Mean sound pressure levels and standard errors of the
single adjustments (from Figure 1), and of the successive adjust-
ments used in evaluating probability reduction (multiplicativity),
%% Y* X versus %* X, are given. Adjustments for the two stan-
dard levels are indicated in the same manner as in Figure 1. The
nonhorizontal double arrows illustrate that, for J.E., the proba-
bility reduction property is violated.

tests (Wilcoxon & Wilcox, 1964) show that, in the premise
condition, the successive adjustments are not outside the
range of single adjustments (see the rightmost column of
Table 5, top panel). The premise can, therefore, be con-
cluded to hold for all the listeners.

In the square-root condition, the successive adjustment
7o+ %+ X falls below the acceptable range for 1 participant,
B.E. (see the right column of Table 5, middle panel). In
the cube-root condition, adjustments of %* 7o+ X fall
outside the acceptable range for B.E. again, as well as for
3 other listeners (see the rightmost column of Table 5,
bottom panel). Thus, although the premise holds for all
the listeners, at least one of the conclusion conditions is
violated for 4 out of 7 participants. For these listeners,

Table 4
Experiment 2: Results for Probability Reduction
4% ik V*

Listener M M z(U)
AM. 59.58 64.74 5.66
B.E. 55.58 62.12 6.88
J.O. SIE37 41.27 7.95
K.A. 49.33 56.38 5:977
O.L. 2141 30.95 7.90
PA. 5072 56.26 4.09
R.A. 17.34 32.49 7.09

Note—Mean adjustments of fractions (in dB [SPL]) and the values of
the test statistics are given. Values are based on 56 observations for each
adjustment and participant. Statistically significant axiom violations
are given in boldface [Mann—Whitney U test; z_;(U) = 1.64, o = .1].

crit

reduction invariance fails, and the weighting function
proposed by Luce (2002) cannot be used to transfer the
fraction numerals into mathematical numbers.

Alternative evaluation of reduction invariance. As
was elaborated in the Method section, the acceptance re-
gions used in testing reduction invariance are larger than
the ones warranted from theory. They are also generally
not centered around the successive adjustments, so that
an axiom might be rejected more easily for one listener
than for another. Making use of the assessments of upper
and lower bounds in the premise condition (4o* X, and
%ox X, respectively), Luce suggested a stronger test of
axiom validity in a personal communication during the
2003 Fechner Day meeting of the International Society
for Psychophysics.5

Given some assessment p* X with a corresponding
lower bound £ - X, Luce specifies the values of the lower
bounds for the assessments p¥« X. Given his theory
holds,

pxX>k-X->pNe X > ke X,

with ¢ = NK, N = 4, 4, in the present case, and u being
a positive constant in the weighting function W(p). The
derivation is given in the Appendix.

The parameter values for k£ and u can be estimated
from the premise condition as follows: With the adjust-
ment of the lower bound (/b; see the second column in
Table 5) and the standard stimulus (s¢; here, 82 dB [SPL])
given as sound pressure levels, &£ can be computed by £ =
10% - Ub=s)_while u can be estimated from the fraction
instructions used in establishing the lower bound (here,
%0) and the consecutive adjustments in the premise (/4
and %): (—Inlko = (—In¥%)# + (—In’%)* (see also Equa-
tion 46, p. 528, in Luce, 2002). The sound pressure level
of the lower bound /b4 in a conclusion condition is
then predicted to be by,.q = 20 - NHlog,ok + st.

In predicting values for the upper bound, the direction
of the inequality is reversed, and the fraction instruction
for the upper bound in the premise (4o) and the corre-
sponding adjustments are used in assessing the param-
eters k and u.

Post hoc testing (Wilcoxon & Wilcox, 1964; see the
rightmost column in Table 6) suggests that for 6 of 7 par-
ticipants, the consecutive adjustments (/%* %* X, and
their square roots and cube roots) tend toward the lower
bound, whereas for Listener P.A., they approach the upper
bound. For the axiom to hold, the predictions of the
lower bound in the square-root and cube-root conditions,
as computed from the lower bound found in the premise
condition, must not undershoot the corresponding con-
secutive adjustments. Similarly, the predictions for the
upper bound in the conclusion conditions must not sur-
pass the consecutive adjustments in those conditions.

Table 6 gives the predicted sound pressure levels for
the lower bound and the observed levels for the consec-
utive adjustments in the square-root and cube-root con-
ditions for 6 of the 7 listeners. For Listener P.A., the
upper bound is used in the computations. The values are

- =
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Figure 3. Experiment 2, Listener P.A.: test for reduction invariance. Given are the
mean adjustments, with respective standard errors. Single adjustments are denoted
by e-symbols. The mean successive adjustments for the premise condition (/4* %* X;
denoted by 0), the square-root Conclusion 1 (Yo 3%* X; denoted by ©), and the cube-
root Conclusion 2 (%* %o* X; denoted by x) are depicted, as are the acceptance re-
gions—that is, the respective dotted areas. The lower and upper horizontal dashed
lines indicate the predicted sound pressure levels for the square-root and the cube-root
conclusions, respectively. For details, see the text.

compared with the prediction by means of a one-sample
t test, and statistically significant test statistics are given
in boldface (o = .1).

The axiom is found to be violated for 6 of the 7 lis-
teners. For 5 of them, the predicted value of the lower
bound is significantly higher than the corresponding
consecutive adjustment in at least one of the conclusion
conditions. As is illustrated in Figure 3, for Listener PA.,
the consecutive adjustments lay at the upper bound in the
premise (O). In the square-root condition, the successive
adjustments (o) were at the predicted upper bound (given
by the lower horizontal dashed line in Figure 3), whereas
the (observed) consecutive adjustment (x) fell below
both the observed, and the predicted, upper bound in the
cube-root condition (see the upper horizontal dashed line
in Figure 3 and Tables 5 and 6), indicating that this con-
dition is violated.

It must therefore be concluded that for only 1 in 7 par-
ticipants, Listener A.M., reduction invariance can be as-
sumed to hold when Luce’s stricter test of axiom validity
is applied. The family of strictly monotonic transforma-
tion functions suggested by Luce (2002) can therefore
not be used, in general, to relate numerals and numbers
in loudness fractionation.

DISCUSSION

In two experiments, using 1-kHz tones, the validity of
loudness fractionations was investigated by testing basic
conditions that are inherent in paradigms of direct scal-
ing. In the following, the results of evaluating threshold
proportion commutativity and probability reduction
(multiplicativity) in the first experiment and probability
reduction and reduction invariance in the second exper-
iment will be discussed in turn.

Evaluating Stevens’s Direct-Scaling Approach

With threshold proportion commutativity holding for
6 of 7 listeners, the first experiment showed that listen-
ers are generally able to produce loudness fractions,
which are meaningful on a ratio scale level of measure-
ment. The fractions used in asking for the ratio adjust-
ments, however, cannot be interpreted as “factual” math-
ematical numbers: Adjusting a tone to be half as loud as
the reference and then making the outcome one third as
loud resulted in tones with sound pressure levels that
were (for the lower and higher standards, respectively)
around 6.2 and 8.0 dB lower, on average, than the ones
obtained by making a tone one sixth as loud as the refer-
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Table 5
Experiment 2: Results for Reduction Invariance

Premise Condition

Yoo* % i Ao*

Listener M M M H(2) ty
AM. 58.29 59.58 62.61 16.45 n.s.o.
B E? 54.96 55.58 59.25 18.41 n.s.o.
J.O. 32.71 2137/ 39.21 37.65 n.s.o.
K.A. 47.66 49.33 S8 13.25 n.s.o.
(@)L 17.39 21.41 24.55 26.57 n.s.o.
PA. 37.93 50.72 49.89 48.94 n.s.o.
R.A. 1725 17.34 25.39 16.85 n.s.o.

Square-Root Conclusion
Vi* Yok Yix Vi

Listener M M M HQ) t,
AM. 64.74 65.63 67.96 9.24 n.s.o.
B.E. 62.12 59.11 6775 43.45 2.24
JO! 41.27 41.95 46.03 11.35 n.s.o.
K.A. 56.38 56.50 62.89 22.83 n.s.o0.
O.L, 30.95 33.16 37.02 17.07 n.s.o.
PA. 56.26 63.05 63.29 24.72 n.s.o.
R.A. 32.49 27.05 : 41.70 23.94 n.s.o.

Cube-Root Conclusion
o %% Yo s

Listener M M M H(2) t
AM. 67.96 68.18 71.82 15.26 n.s.o.
B.E. 67.75 59.77 70.16 57.32 5.37
i@ 46.03 42.16 56.18 49.59 2.38
K.A. 62.89 58.98 67.79 36.05 2.39
O 37.02 37.38 41.99 16.62 n.s.o.
PA. 63.29 63.77 70.63 34.85 n.s.0.
R.A. 41.70 31.91 48.91 24.56 2.59

Note—@Given are the mean sound pressure levels of adjustments in dB
(SPL), based on 28 observations each, and the values of the Kruskal—
Wallis test statistic /, all of which were statistically significant [H_;(2) =
4.61; o = .1], indicating that at least two of the three adjustments dif-
fered. To decide whether the successive adjustments (/4% /% X, Zo* J*
X, or %* %o* X) fell outside of the range given by the single adjustments,
directional post hoc tests according to Wilcoxon and Wilcox (1964)
were computed, with two tests per experimental condition and partici-
pant. If the post hoc tests turned out to be statistically significant, the
test statistic 7, is given (one-tailed criterion value #, ., = 1.92, testwise
significance level & = .05). The abbreviation n.s.o. indicates that the
successive adjustment did not statistically lie outside of the range spec-
ified by the single adjustments.

ence sound right away. These results on loudness fraction-
ations are in line with, and generalize, findings reported
by Ellermeier and Faulhammer (2000) on magnitude
productions of loudness. In their investigation, starting
from levels at 40 and 55 dB (SPL), successive adjustments
of doubling the loudness of a given tone and making the
outcome three times as loud resulted in sound pressure
levels that were about 6 dB higher in level than a single
adjustment of “six times as loud” (see their Figure 2),
thus showing a comparably large effect.

Functional Relationship Between
Numerals and Numbers

With the probability reduction property violated in the
first experiment, the second experiment served to ex-
plore whether a specific weighting function proposed by
Luce (2002) was suited to transform the fraction numer-

- ___________________________________________________________________________
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als into scientific numbers reflecting sensation magni-
tude. Following Prelec (1998; see also Luce, 2001), Luce
(2002) specified a qualitative—that is, parameter-free—
behavioral property called reduction invariance, which
is equivalent to the two-parameter Prelec function W{p) =
exp{—A[—In(p)]#}. Reduction invariance does not require
multiplicativity to hold for the mathematical numbers
corresponding to the fractions used in an experiment but,
rather, uses the outcome from one experimental condi-
tion (the premise) to predict the outcomes of the conclu-
sion conditions.

Prior to evaluating reduction invariance, the probability
reduction hypothesis was again put to an empirical test,
since a new sample of experimental participants was used.
As before, probability reduction clearly failed in all listen-
ers, in that successive adjustments of /%4* Ji* X fell below
single adjustments of %* X by about 8.4 dB, on average.®

Furthermore, reduction invariance turned out to be vi-
olated in 6 of 7 listeners. Successive adjustments fell
below predicted sound pressure levels by 4.3 and 8.0 dB
in the first and second conclusions of the axiom, respec-
tively. It must therefore be concluded that the attempt at
establishing a transformation function proposed by Luce
(2002) did not succeed.

It should be noted that the experimental evaluation of
reduction invariance was imprecise, because, due to con-
siderations of experimental design (outlined in the Method
section), instead of the exact roots of the fractions as war-
ranted by the reduction invariance axiom, their smoother
(i.e., rational) approximations (given in Table 1) were
used. These approximate values were slightly larger than
the exact values in the second conclusion; in the first
conclusion, one value was larger and one smaller than
the proper fractions demanded by theory. If this rounding
error alone had exerted an effect, then, at least in the sec-
ond conclusion condition, it should have led to adjust-
ments that tended to be louder than the predicted ones.
As can be seen from Table 6, however, the observed ad-
Jjustments were lower in level than predicted, in all the
participants. Thus, using approximate fractions, instead

Table 6
Experiment 2: Alternative Evaluation of Reduction Invariance

Square-Root Conclusion Cube-Root Conclusion

Listener Pred. M(Obs.) t Pred. M(Obs.) t
AM. 66.01 65.63 —0.41 69.30 68.18 -1.30
B.E. 63.76 59111 —-6.37 6751 59.77 —14.41
J.O. 48.75 41.95 —6.28 55.59 42.16 —12.67
K.A. 58.84 56.50 —2.23  63.60 58.98 —4.83
O.L. 38.42 33.16 —3.88 4738 37.38 —=7.74
PA. 62.63 63.05 045 67.58 63.77 —4.53
R.A. 38.32 2705 —4.98 4731 31.91 —6.32

Note—Predicted (Pred.) sound pressure levels for the lower bound ac-
cording to Luce’s proposal (see the text) and means (in dB [SPL]) of the
observed (Obs.) consecutive adjustments in the square-root and the
cube-root conclusions, respectively, along with the outcome of the one-
sample ¢ tests. Significant deviations of the adjustments from the pre-
dicted bounding level are given in boldface (¢;, = —1.70, @ = .1). For
Listener P.A_, the adjustments were evaluated against the upper bound.




of the proper root values, did not produce a bias strong
enough to (erroneously) retain or reject the axiom.
Furthermore, it is very unlikely that the results were
caused by a general floor effect—that is, the inability of
listeners to distinguish between the fractions %o, /0, and
% Y, or their failure to produce different sound pressure
levels (reflecting the respective sensation magnitudes)
for the different fractions—because, for one, the Kruskal—
Wallis test turns out to be statistically significant in all
cases and, furthermore, the successive adjustments are at
the lower bound for most, but not all, of the participants.
A functional relationship between numerals and num-
bers, which is not identity, the so-called subjective num-
ber function, has also been proposed by multistage mod-
els of psychophysical scaling (Attneave, 1962; Rule &
Curtis, 1982). With the goal of disentangling sensory
and judgmental aspects of the task, these models assume
that a magnitude-scaling judgment is the result of two
processes, the first relating the stimulus to sensation
magnitude, and the second relating the sensation magni-
tude to a subjective number continuum. Each of these
processes is supposed to be ruled by a power function.
Subsequent experimenters have tried to deduce the
shape of the subjective number function—for example,
by nonmetric conjoint scaling of judgments on which
member of a stimulus pair consisting of a weight and a
number was greater in magnitude (Rule & Curtis, 1973),
by a nonmetric multidimensional scaling analysis based
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on similarity ratings of pairs of number words (Schnei-
der, Parker, Ostrosky, Stein, & Kanow, 1974), or by rat-
ing the perceived randomness of a set of numbers (Banks
& Coleman, 1981).

Although these experiments employed very different
methods in order to estimate the functional form, they
are unanimous in supporting a power function relation-
ship between numerals—that is, subjective numbers and
numbers proper—rather than a logarithmic or a linear
transformation function. Note, however, that with u = 1,
the transformation function #( p) that Luce proposed for
fractionation judgments (Luce, 2002, Equation 25, p. 527)
includes power functions as a special case—W(p) =
exp{ —A[—In(p)]#} = pr—for which, indeed, even the
probability reduction property must hold. Thus, even
though power functions seem to provide a good fit to the
data collected, a fundamental condition underlying a
power function representation (among other possible
functional forms)—namely, reduction invariance—is
violated. In principle, an axiom-testing approach such as
the one taken here provides a much more severe, and
valid, test of the appropriateness of any transformation
function postulated than an approach based on fitting
curves does. It must, therefore, be concluded that power
functions cannot constitute the correct representation for
relating numerals and numbers.

One might possibly argue that a given functional form
may be inadequate for every single listener but can still
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Figure 4. Results of Experiment 2: mean adjustments across all listeners. Given are the
mean values of fractionation adjustments and the mean standard errors across all listeners.
For the axiom to hold, the mean successive adjustments for the premise condition (}* %* X;
denoted by 0), the square-root Conclusion 1 (%* %* X; denoted by <), and the cube-root Con-
clusion 2 (%* %> X; denoted by x) must lie within the acceptance regions—that is, the re-
spective dotted areas. Visual inspection suggests that although this may be the case for the
premise and the square-root conclusion, it does not hold true for the cube-root conclusion.
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constitute a valid representation for a group of listeners.
This is not the case here, however. When instead of testing
reduction invariance individually for every participant, the
analysis is based on the pooled data set (as was the case in
the experiments outlined above), the pattern of results is
the same: Figure 4 gives the mean adjustments and mean
standard error of adjustments across all listeners. As can be
seen, the cube-root conclusion is violated, and thus reduc-
tion invariance must be rejected for the pooled data as well.

It must be noted that the present results do not refute
Luce’s general theory as such. As outlined in Luce (2002,
2004), the only general constraint put on the weighting
function W and the psychophysical function v is that
they be strictly increasing. On the basis of the results of
the second experiment, a specific family of transforma-
tions (including the power function) can be rejected—
namely, the Prelec functions proposed by Luce (2002) as
adequate weighting functions relating numerals and num-
bers. Thus, in the present investigation, only one aspect
of Luce’s theory was addressed, and evaluations of other
aspects are under way (e.g., Steingrimsson, 2002; Zim-
mer, Luce & Ellermeier, 2001).

In conclusion, the present experimental results seem
to argue for a function with a steeper slope than can be
modeled by the class of transformation functions Luce
(2002) proposes. The future challenge, however, will not
be to find some such function that provides a (more or
less) satisfactory fit to the data but, rather, to define
qualitative conditions that can be tested empirically and
from which the functional relationship between the nu-
merals, on the one hand, and the mathematical num-
bers—that is, the scale values of the sensation scale in
question—on the other, can be rigorously (i.e., mathe-
matically) derived.
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NOTES

1. The notation used here follows neither Narens (1996) nor Luce
(2002) but has been simplified with the goal of facilitating an immedi-
ate understanding of the empirically relevant axioms for readers who
are not closely familiar with Narens’s and Luce’s theories. Note that
Narens uses boldface letters for the number words, whereas in Luce’s
notation, p* corresponds to W( p), a strictly increasing weighting func-
tion relating numerals and numbers, with W(0) = 0, and W(1) = 1. The
outcome of a trial in a magnitude production task—namely, a sound that
is judged as being p times as loud as the standard X——is denoted by px X
in the present article, whereas it reads (x, p, £) in Narens’s diction, with
t signifying the standard and x the sound that is produced. In Luce
(2002), the outcome of a magnitude production trial is given by W( p) y(x),
x being the standard and w(x) the (strictly increasing) psychophysical
function. In Luce’s (2002) theory, all stimuli are expressed as intensi-
ties above sensation threshold, but as the author notes on pp. 521 and
522, except for stimuli very close to threshold, the distinction between
stimuli measured as sound pressure levels and as sensation levels is not
behaviorally relevant for the purposes of his axiomatization.

2. In order to avoid potential hearing damage, the maximal sound
pressure level generated by the system was set to 94 dB SPL. It was
never reached in the course of experimentation.

3. It is worth mentioning that choosing the more conventional sig-
nificance level @ = .05 would not have influenced the statistical deci-
sion in any of the statistical tests performed.

4. For none of the participants did the sound pressure levels of the ad-
justments made for a given loudness fraction (e.g., %* X) differ signif-
icantly between the square-root and the cube-root conditions (Mann—
Whitney U test, a = .1).
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5. R. D. Luce, Larnaca (Cyprus), October 22, 2003. cated a year later (by 34.76 and 24.85 dB, on average). Since audiome-
6. Two participants, K.A. and O.L., took part in both experiments, the  try did not reveal any changes in hearing threshold, and since a context
data collection for which was more than a year apart. Whereas K.A’s  effect (adjusting a fixed stimulus range to the range of fractionation in-
adjustments did not differ much on these two occasions (i.e., by 2.33  structions) would have resulted in higher sound pressure levels for the
and 6.08 dB, on average, for the successive and the single adjustments, '+ /4* X and /* X adjustments in the second experiment than in the

respectively), O.L.’s adjustments were considerably lower when repli-  first, there is no obvious explanation for this singular discrepancy.

APPENDIX

The following proof was outlined by R.D. Luce in a personal communication on October 22, 2003, at the
annual Fechner Day Meeting of the International Society for Psychophysics, which was held at Larnaca,
Cyprus.

Given a stimulus, x, and a fraction to be implemented, p, (x, p) denotes the stimulus that a listener judges
to be p times as loud as x; yand W are the psychophysical function and the weighting function transforming
the numeral p into a (mathematical) number, respectively, with associated function parameters c, 3, A, and p
(Luce, 2002).

In Luce’s theory, the following equations hold:

(D) y(x,p) = v - W(p) (Equation 20, p. 523, in Luce, 2002),
) yx) = axp (Equation 39, p. 526),
and

(3) W(p) = exp{—A[—In(p)]*} & W-1(p) = exp{—[—In(p)]#} (Equation 45, p. 527).

Suppose a lower bound, so that (x, p) > & - x (with 0 < k£ < 1 in the case of fractionation judgments). Then it
is shown in the following that (x, p¥) > kV* - x; N € .

Using (1) and (2) yields y(x, p) = w(x) - W(p) = axP- W(p) and y(k - x) = akPxP.
Thus, axB - W(p) > akPxB < W(p) > kP < p > W-1(kP) & pV > [W~1(kP)]V. Now, using (3),
W(p) = =PI
> exp(—A{—In[W~1(kP)]V}#)
> exp(—A - N#{—In[W~1(kP)}*})
> exp(—A + NH{[—AIn(kB)]VK}H)
> exp[NH - In( kP)]
S [ e

In sum, y(x, pV) > w(k¥ - x) & (x, pV) > KV - x.
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